Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo.

نویسندگان

  • S Kelly
  • V Chapman
چکیده

Cannabinoid1 (CB1) receptors are located at CNS sites, including the spinal cord, involved in somatosensory processing. Analgesia is one of the tetrad of behaviors associated with cannabinoid agonists. Here, effects of a potent cannabinoid CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) on evoked responses of dorsal horn neurons in anesthetized rats were investigated. Extracellular recordings of convergent dorsal horn neurons were made in halothane anesthetized Sprague-Dawley rats (n = 16). Effects of spinal application of ACEA on electrically evoked responses of dorsal horn neurons were studied. Mean maximal effects of 0.5, 5, 50, and 500 ng/50 microl ACEA on the C-fiber-mediated postdischarge response were 79 +/- 6, 62 +/- 10, and 54 +/- 7% (P < 0.01), 45 +/- 6% (P < 0.01), of control, respectively. ACEA (500 ng/50 microl) also reduced the C-fiber-evoked nonpotentiated responses of neurons (59 +/- 9% of control, P < 0.05) and Adelta-fiber-evoked responses of neurons (68 +/- 10% of control, P < 0.01). Minor effects of ACEA on Abeta-fiber-evoked responses were observed. Spinal pre-administration of the selective CB1 receptor antagonist SR141716A (0.01 microg/50 microl) significantly reduced effects of ACEA (500 ng/50 microl) on postdischarge responses of dorsal horn neurons. This study demonstrates that spinal CB1 receptors modulate the transmission of C- and Adelta-fiber-evoked responses in anesthetized rats; this may reflect pre- and/or postsynaptic effects of cannabinoids on nociceptive transmission. CB1 receptors inhibit synaptic release of glutamate in rat dorsolateral striatum, a similar mechanism of action may underlie the effects of ACEA on noxious evoked responses of spinal neurons reported here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cannabinoid Receptor Activation on Spreading Depression

Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...

متن کامل

Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents

BACKGROUND Systemic administration of cannabinoid agonists is known to reduce pain induced by bladder inflammation and to modulate cystometric parameters in vivo. We have previously reported that intravesical administration of a cannabinoid agonist reduces the electrical activity of bladder afferents under normal conditions. However, the effects of local activation of bladder cannabinoid recept...

متن کامل

Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS.

We designed AM1241, a selective CB2 cannabinoid receptor agonist, and used it to test the hypothesis that CB2 receptor activation would reverse the sensory hypersensitivity observed in neuropathic pain states. AM1241 exhibits high affinity and selectivity for CB2 receptors. It also exhibits high potency in vivo. AM1241 dose-dependently reversed tactile and thermal hypersensitivity produced by l...

متن کامل

Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors.

BACKGROUND Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The ...

متن کامل

Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia.

Cannabinoids, such as Delta9-THC, are capable of inhibiting nociception, i.e., pain transmission, at least in part, by interacting with spinal Gi/Go-coupled cannabinoid receptors. What is not known, however, is the antinociceptive role of endogenous spinal cannabinoids. If endogenous cannabinoids modulate basal nociceptive thresholds, then alterations in this system could be involved in the eti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2001